Phase separation and coexistence of hydrodynamically interacting microswimmers.

نویسندگان

  • Johannes Blaschke
  • Maurice Maurer
  • Karthik Menon
  • Andreas Zöttl
  • Holger Stark
چکیده

A striking feature of the collective behavior of spherical microswimmers is that for sufficiently strong self-propulsion they phase-separate into a dense cluster coexisting with a low-density disordered surrounding. Extending our previous work, we use the squirmer as a model swimmer and the particle-based simulation method of multi-particle collision dynamics to explore the influence of hydrodynamics on their phase behavior in a quasi-two-dimensional geometry. The coarsening dynamics towards the phase-separated state is diffusive in an intermediate time regime followed by a final ballistic compactification of the dense cluster. We determine the binodal lines in a phase diagram of Péclet number versus density. Interestingly, the gas binodals are shifted to smaller densities for increasing mean density or dense-cluster size, which we explain using a recently introduced pressure balance [S. C. Takatori, et al., Phys. Rev. Lett. 2014, 113, 028103] extended by a hydrodynamic contribution. Furthermore, we find that for pushers and pullers the binodal line is shifted to larger Péclet numbers compared to neutral squirmers. Finally, when lowering the Péclet number, the dense phase transforms from a hexagonal "solid" to a disordered "fluid" state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical density functional theory for microswimmers.

Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a ...

متن کامل

Rational and Religious Roots of Peaceful Coexistence with the Religious Other

In this article, rational arguments and religious teachings that underlie the necessity of peaceful coexistence with the followers of other religions will be discussed. Moreover, the core impediments to coexistence, such as lacking self-knowledge and being ignorant about the others, will be examined, and practical ways for effectively interacting with the followers of other religions will be su...

متن کامل

Gas-Liquid Coexistence in the Primitive Model for Water

We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda [J. Kolafa and I. Nezbeda, Mol. Phys. 61, 161 (1987)]. Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized ...

متن کامل

Critical properties and phase separation in lattice Boltzmann fluid mixtures.

Basic equilibrium properties of lattice Boltzmann (LB) fluid mixtures (coexistence curve, surface tension, interfacial profile, correlation length) are calculated to characterize the critical phenomena occurring in these model liquids and to establish a reduced variable description allowing a comparison with real fluid mixtures. We observe mean-field critical exponents and amplitudes so that th...

متن کامل

A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles

A hybrid direct numerical simulation (DNS) approach is proposed for simulating turbulent collisions of hydrodynamically-interacting particles, under the assumptions that the disturbance flows due to particles are very localized in space and there is a sufficient length-scale separation between the particle size and the Kolmogorov scale of the undisturbed turbulent flow. The approach consists of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 12 48  شماره 

صفحات  -

تاریخ انتشار 2016